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SPATIALLY PERIODIC DYNAMOS

By G. O. ROBERTS
Department of Applied Mathematics, University of Newcastle upon Tyne
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It is established analytically that, in a precisely defined sense, almost all steady spatially periodic
motions of a homogeneous conducting fluid will give dynamo action at almost all values of the
conductivity. The same result is obtained for motions periodic in space-time. The asymptotic form
of the growing field, for an arbitrary initial field of finite energy, is also presented.

Dynamo action is first shown to require that for some real vector j there is a magnetic field solution

f the fi
of the form B = Hexp (pt+ij.x),

where H is a complex function of position (or of position and time) with the same periodicity as the
motion, and p has positive real part, indicating growth. This number p is an eigenvalue of a linear
differential operator on the space of admissible functions H. The first term of a power series in j for
the eigenvalues p which vanish to zero order is studied. Itis thus proved sufficient for dynamo action
that the determinant of the symmetric part of a certain 3 x 3 tensor, a function of the motion and
conductivity, is non-zero. Finally, it is shown that this determinant is an analytic function of the
conductivity, and is non-zero in a small conductivity limit for nearly all motions. This proves the
stated result.
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1. INTRODUCTION
(a) The kinematic dynamo problem

The observed terrestrial, stellar and galactic magnetic fields are widely thought to be due to
magnetohydrodynamic dynamo action. Much study has therefore been given in recent years to
the excitation of a magnetic field by a fluid motion. Because of the difficulty of proving such
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536 G. O. ROBERTS

dynamo action, attention has largely been confined to the equations for the variation of the
magnetic field, with an assumed fluid motion, not necessarily steady. In this paper the same
kinematic approach is used.

With the usual notation; the equations for the magnetic field in a fluid with uniform con-

ductivity o e.m.u. are B=Vx (ux B) +AV2B, (L1)
V.B =0, (1.2)

where A is the resistivity or magnetic diffusivity 1/4mo. Equation (1.2) can be regarded as an
initial condition, since the divergence of equation (1.1) gives

V.B = AV2(V.B),

and with V. B = 0 initially, this equation has the unique solution V. B = 0 for all time.
The magnetic Reynolds number R, defined by

R = ULJA, (1.3)

where U and L are respectively velocity and length scales for the motion and are normally
chosen as unity, gives an estimate for the relative magnitude of the two terms on the right-hand
side of equation (1.1). Dynamo action with a given motion and magnetic Reynolds number
requires that with an initial magnetic field of general form it is possible for the total magnetic
field energy E, given by B2
E = f— dv, (1.4)
8m
to grow indefinitely.
(b) Previous work

P. H. Roberts (19674, b) has reviewed previous work on this problem. Cowling (1933, 1957)
showed that an axisymmetric magnetic field cannot be amplified or maintained by a fluid
motion. The same applies to fields which are functions of only two Cartesian coordinates. The
kinematic dynamo problem is thus that of choosing motions complicated enough to give dynamo
action and simple enough for this action to be proved.

It appears that all published proofs of dynamo action use, explicitly or implicitly, expansions
in ascending powers of small dimensionless parameters, keeping only a few terms. Apart from
the magnetic Reynolds number, the only dimensionless numbers available are ratios of different
velocity, length and time scales, and suitable combinations of these are used. Thus Backus
(1958), with a spherical geometry, proposes ‘jerky’ motions in which almost instantaneous
fluid displacements alternate with long periods when the fluid is stationary; it is clear that an
implicit limit is involved, and such motions are far from realistic. Herzenberg (1958) proposes
a motion in which small spheres of fluid rotate steadily within a large fluid sphere at rest; his
velocity discontinuities are an implicit limit and he also utilizes two explicit limits, the radii of
the small spheres being small compared with their separation, and this small compared with
the radius of the large sphere. Braginskii (19644, b) also takes a spherical geometry, with an
axisymmetric toroidal motion defining the large magnetic Reynolds number R, and with
poloidal and non-axisymmetric motions smaller by factors of R and R} respectively. His
expansions for the magnetic field are then assumed to be asymptotically valid as R tends to
infinity.

Earlier work by Childress (19674, 1969) and G. O. Roberts (1969, 19704) on spatially periodic
dynamos also uses such small parameter approaches, with a limit of small conductivity and
with small ratios of length scales. This work is discussed in relation to the present paper in § 6.
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SPATIALLY PERIODIC DYNAMOS 537

(¢) Spatially periodic dynamos

In this paper too a small parameter approach is used, but this is done in such a way that
generality is preserved in the motion and conductivity. Attention is confined to motions of an
infinite fluid with their components either spatially periodic functions or periodic functions of
space-time. This has three advantages. First, there is no need to consider boundary conditions,
apart from the condition that the total energy given by equation (1.4) is finite. Secondly,
Fourier analysis can be readily applied; this is in contrast to the spherical geometry for which
the natural decay modes involve spherical harmonics and Bessel functions. Finally, the infinite
geometry means that the magnetic field can have an arbitrarily large length scale superposed
on the natural length scale of the motion. This gives the small parameter used in the analysis.
The natural decay rate of the field is of order the square of this parameter; it is shown that
there is a regenerative term of the order of the small parameter itself.

In most of the paper, attention is confined to steady spatially periodic motions; the extension
of the analysis to motions periodic in space-time is presented in appendix A. Two linear
differential operators and a compact linear operator are studied in the text; required results
concerning their spectral properties are presented in appendix B. Appendix C completes the
analysis in § 2 of the form of the growing magnetic field; and in appendix D the basic perturba-
tion method of § 3 is justified. At a first reading, therefore, the main text is self-contained.

2. SPATIALLY PERIODIC MOTIONS AND THE CORRESPONDING
MAGNETIC FIELD FORM

If there is a fixed set of three independent vectors L, I,, I; such that
S(x+1L) =f(%), (2.1)

for all # and for 7 = 1, 2 and 3, then the function f(#) will be called spatially periodic. A function
with the same periodicity as the motion #(#) under consideration will be called u-periodic. The
average part /4 and the oscillatory part f'(#) are defined as

1 1 1
= [laaf e as rnarLE L)

~ [ s@ar (2.2)

(where 7 is the volume defined by the first integral),
S (%) =f (%) =fA (2.3)
Then f’ () has zero average, and (VF)A = 0. (2.4)

Except in appendix A, attention is confined to motions with
ud =0, (2.5)

The analysis of §§3 and 5 can be extended in a straightforward manner to include spatially
periodic motions not satisfying condition (2.5), with the same results in that equation (3.11) is
unaltered. This extension is not presented, for simplicity, since in any case the analysis of
appendix A applies to all such motions.

59-2
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538 G. O. ROBERTS

The u-periodic function f(#) can be regarded as a function ¢ of the variable §, where

8 =hLE+1LE+1E
= LE, (2.6)
and the 3 x 3 matrix L with columns [; is non-singular. This function ¢(§) is then periodic in
each of §;, £, and &;, with unit period, and can be written as the Fourier series

$(8) = X $(n) cxp (2min ), (2.7)
where the sum is over all sets of three integers. Thus
fls)=3 f(k)exp (ik. %), (2.8)
where K is the vector set defined by
K = {2(LT)'n: n,, ny and ny integers}, (2.9)

LT denoting the transpose of L. Further,
A =F0). (2.10)
Any u-periodic function, including u( ) itself, can be Fourier analysed in this way.
In the basic analysis of § 3, attention is confined to magnetic fields of the form
B(x,t) = H(x)exp (pt+ij. %), (2.11)
where H(%) is complex and u-periodic, p is complex, and j is real. A field of this form does not
have finite energy; but it is established below that an initial magnetic field of finite energy E
given by equation (1.4) can have this energy grow exponentially if, and only if, there is for some
real vector j a magnetic field solution of the above form with the real part of p positive. The result
is related to Bloch’s theorem in solid-state physics, where a partial differential equation with
spatially periodic coefficients also arises. With this assumption, it is possible in obtaining the
main result to proceed directly to § 3.
Substitution of equation (11) into the magnetic field equations (1.1) and (1.2) gives

pH(x) = ZH(«), (2.12)

(V+1ij).H(x) =0, (2.13)

where £ is a linear differential operator, a function of A and j as well as of the motion, on the
vector space V(j) of complex u-periodic vector functions satisfying condition (2.13), and

PH(x) = (V+ij) x (ux H)+ A(V +ij)2 H. (2.14)

Thus p is an eigenvalue of Z. A detailed description of the spectral properties of & is given in
appendix B. For the analysis below it is assumed that & has a set of eigensolutions

{£a(3), Ho(%,§):n > 1}
with the eigenvectors complete in the space V(j). The more general situation is analysed in

appendix C.
Any initial magnetic field B(«) with finite total energy can be Fourier analysed in the form

B(x) = [B(j) exp (ij. %) d%, (2.15)

where, using equation (1.4),
B(j) = (2m)=3 [ B() exp (—ij. #) d*s, . (2.16)
E = [|B(j)|2 . (2.17)
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It is natural to assume that B(«) is infinitely differentiable, since the diffusion term will ensure
that this becomes so immediately if it is not so initially. Then, for any n,

B(j) = o(|j]-™), (2.18)

uniformly, as [j| —co. It is also convenient to assume that B(#) is smaller than =" at infinity
for any #; this property is permanent according to equation (1.1). Then I:’:( 7) is infinitely dif-
ferentiable.

The function H(,j) is defined by the absolutely convergent sum

H(x,j) = zKﬁ(j+ k) exp (ik. %), (2.19)
ke
where the set K is defined by equation (2.9) and the absolute convergence is implied by equa-

tion (2.18). Clearly, H(#,j) is u-periodic. Further, it is a differentiable function of j, since B(j)
is differentiable, and is in the space V(j) defined by equation (2.13), since from equations (2.15)

and (1.2), j.ﬁ(j) -0,
(V+ij).{B(j + k) exp (ik. )} = 0.

Thus, by the assumption of completeness stated above,

H(x.j) = ¥ a,j) Hu(%]), (2.20)

where the a,(j) are complex amplitudes. Now from equations (2.15) and (2.19)

B(#) = f H(x,j) exp (ij . %) d%, (2.21)
J
where J is the set of three-dimensional vectors defined by
J={2m(Lh) v =} <y < 3 (2.22)
cf. the definition (2.9) of the vector set K. Thus
B(x) = [ { £ a0 Halwd)fexp (3. ) 0%, (2.23)
and, using equation (2.11),
B(x,1) = | dY % a,(j) Hu(#.]) exp{pn(j) i+ 4} (2.24)

The result, clearly indicated by equation (2.24), that there is dynamo action if and only if
one of the p,,(j) has positive real part, is confirmed by the detailed analysis in appendix C. The
asymptotic form of the growing field is also derived there, for a general initial field, in the form

B(%,t) ~ 2Re[a;(jo) Hy(#,5,) exp {p1(Jo) t +1jo- ¥} I(%,1)], as oo, (2.25)

where Re{p,(j)} has its maximum for p,( +j,) , a;(j,) is the corresponding complex amplitude
determined by the initial conditions, and the exponential term represents a growing progressive
plane wave. The complex amplitude function I(#, {) is given by

I(%,¢) = (w/t)} (det P)~dexp{— (& —fD)' P-1(x —ft) |48}, (2.26)

f being the real vector determined by
cr 0Py,
~Yfie =55 U, (2.27)
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and P the symmetric complex matrix with positive definite real part determined by

_1 & 2.28
_Pkm"zajkajm(]())' ( )

I(x,t) has its maximum amplitude at & = ff and is small for
Ref{(x—fo)' P (x—f)} > ¢;
further, its space integral is [1(%,t) d® = 8. (2.29)

Finally, the asymptotic total energy is derived in appendix C in the form

B() ~ () |ay (7o) P [det Re (P14 (1) [ By o) dr) - exp2Re i} ), (280

as [— o0,

3. BAasic ANALYSIS

It has been established in § 2 that the motion gives dynamo action if, and only if, there are
magnetic field solutions of the form (2.11) with Re (p) > 0, for some real j. In this section atten-
tion is confined to small j, and it is assumed that a particular eigenvalue p of the linear differential
operator #(j) defined by equation (2.14) can be expanded as

b= %pn, (3.1)

where p,, is explicitly of order z in the components of j. It is further assumed that the corre-
sponding eigenfunction H(#), with its arbitrary multiplying constant suitably chosen, can be

expanded as ©
H(s) = 3 H,(s), (3.2)

where H, (%) is explicitly of order z in the components of j. These assumptions are justified in
appendix D, and related to degenerate perturbation theory for linear operators. The approxima-
tion in this section of taking only the terms p, and p, in the expansion of p is shown to be valid for
sufficiently small j, and it is also shown how further terms in the expansion can in principle
be found.
To zero order in the components of j, equations (2.12) to (2.14) give
poHy =V x (ux Hy) + AVZH,, (3.3)
V.H, = 0. (3.4)
With the use of equation (2.4), the average of equation (3.3) gives
po HE = 0. (3.5)

This result is the familiar one that the uniform part of a magnetic field cannot grow or decay if
the electric field is bounded at infinity. Attention is confined to eigensolutions with

H} +0, p,=0. (3.6)

To first order in the components of j, the average parts of equations (2.12) and (2.13) now give
pHE = 1j x (ux Hp)A = ij x (ux Hy)4, (3.7)

using equation (2.5), and j.-Hy =0. (3.8)
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For any given motion, it is established in § 5 that equations (3.3), (3.4) and (3.6) have a unique
solution Hy(x), for any given Hg, for all positive values of the resistivity A, except possibly a
bounded discrete set, at most denumerable and with no non-zero point of accumulation. Thus
the term (u x H)A in equation (3.7) is determined by H§ in the form

{(U X H!S)A}q = O‘qr{HOA}ra (39)

where the nine terms of a,, are real functions of the motion, conductivity and coordinate system,
and therefore form a tensor since their contraction with an arbitrary vector gives a vector. With

b = H, (3.10)

equations (3.7), (3.8) and (3.9) give
plbq = ieqrsjraswbw; (3.11)
aba = 0. | (3.12)

This three-dimensional eigenvalue problem is analysed in §4.

4., ANALYSIS OF THE SIMPLIFIED EIGENVALUE PROBLEM

The three-dimensional eigenvalue problem of equations (3.11) and (3.12) can be written

by = B b (4.1)
Jabg =0, (4.2)
where Baw = €45 Jr Corpr (4.3)

Dynamo action at first order only requires that f,,, has an eigenvalue § with positive real part,
for if p is non-zero, the contraction of equation (4.1) with j, shows that equation (4.2) is satisfied.

JaBaw = 0. (4.4)

The real tensor «g, can be written as the sum of its symmetric and antisymmetric parts, as

Further, £, is singular, since

follows

Oy = Oy + Ly (4.5)
where U = (0 + Aye) s
@ = M=) (o
= = CaunUps
20, = — € Ugyye

Hence, from equations (4.3), (4.5) and (4.6),

ﬁqw = i(?’qw~3qwjrvr+vqu), (4'7)
where Yaw = Cqrs Jr %siie (4.8)
As with f,,,, v, 1s singular, and the eigenvector b, corresponding to any non-zero eigenvalue y
must have j,b,, = 0. Thus from equation (4.7) it is also an eigenvector of 4,,, corresponding to
the eigenvalue B =ily—jv,). (4.9)

So there is dynamo action to first order if and only if y,, has an eigenvalue with negative
imaginary part. ‘
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542 G. O. ROBERTS
With axes the principal axes of ag;,
0 —Js%s Jals
Yoo =1 Js% 0 —nogl, (4.10)
—J20%4 J1% 0

where a,, o, and a3 are the real eigenvalues of og;. The non-zero eigenvalues of y,,, are deter-
mined by the equation —y2=0D, (4.11)
where D =jlayas+jiason +j3o o,

= Jrfs%s (4.12)

the last expression, in which af, is the adjoint of a;;, being invariant. So dynamo action at this
order requires just that D be positive.

There are now four possible cases, the first two being the most general:

(a) The three a values all have the same sign, D > 0 for all j, and Re (p) > 0 for sufficiently
small j in all directions.

(6) One a value has the opposite sign to that of the other two, D > 0 only for j directions
sufficiently near the corresponding eigenvector of az;, and Re (p) has only been proved positive
for sufficiently small j in those directions.

(¢) One « value is zero and the others have the same sign, Re (p) has been proved positive
for sufficiently small j in all directions not normal to the eigenvector of a;; corresponding to the
zero eigenvalue.

(d) One a value is zero and the others have opposite signs, or more than one is zero, so that
D < 0 and there is no dynamo action to first order in the components of j.

It may be noted that the determinant & = |a5| is the product of the three eigenvalues; thus
if this determinant is non-zero for a particular motion and conductivity, dynamo action occurs.
This is the key to the argument of § 5.

Since in the analysis above attention has been confined to small j, the field solution in the form
(2.11) can be represented as the sum of a part BS, a slowly varying function of position, and
BE, a rapidly varying function, where

BS = H*exp (pt+1j. «), (4.13)

and BR = H'(x)exp (pt+if. »). (4.14)

It is of interest to examine the general form of the slowly varying part BS of the growing fields.

The exponential factor indicates that it is a plane wave. Equation (3.8) shows that the magnetic

field is normal to j, and thus that it is in the wavefronts. With the real and imaginary parts of
p and HA written as p, and p;, H2 and H{,

Re (B®) = {Hf cos (j. x+pit) — Hisin (j. &+ p, t) } errt, (4.15)

Thus unless H and H2 are parallel, the slowly varying part of the magnetic field solution is
an elliptically polarized plane wave, of very large wavelength.

This section is concluded with the first order analysis for motions for which the tensor ag; is

the isotropic tensor g = 0By (4.16)
With axes so that j = (J,0,0), 0O 0 o0
Yo =J%|0 0 —1f, (4.17)
0o 1 0

with the eigensolution v =—iaj, b= (0,1,1). (4.18)
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Thus, in the first-order approximation,

B® = [0, cos {j(x —v11)}, —sin{j(x—v;2)}] exp (otfd), (4.19)

where the vector v is defined by equation (4.6).

5. EXPLICIT FORMULAE FOR THE TENSOR &,

It was asserted in § 3 that the equations (3.3), (3.4) and (3.6) have a unique solution H,( )
for any given complex Hg, for all positive values of A except possibly a bounded set of discrete
values, possibly denumerable but with no non-zero point of accumulation. This is established
below, and explicit expressions for both Hj( %) and the corresponding 3 x 3 tensor o, are obtained.
The second is then used to establish a precise sense in which nearly all spatially periodic motions
give dynamo action for nearly all resistivities A.

Equation (3.3) with p, = 0, can be written as

T Hy=-Vx(ux Hy), (5.1)

where  is the linear differential operator on the space V'’ of oscillatory solenoidal u-periodic
vector functions H'( ) defined by

TH =V x(uxH)+AV2H'. (5.2)

The spectral properties of 7 are like those of Z(j§), and are described in appendix B. It is clear
that equation (5.1) is uniquely soluble if J is invertible, or, equivalently since the eigenvalues
of  have no point of accumulation, if zero is not an eigenvalue of .

Now J H'’ can be written as
JH =V(ASJS—-2)H, (5.3)

where £ is the identity operator and £ is another linear operator on the space V', defined by
2H' = (V) -V x (ux H')}. (5.4)
Thus " has the inverse J 1, given by
I H = (AI -2)"1 (V)1 H, (5.5)

if and only if the operator (A.# — 2) is invertible.

It is shown in appendix B that the spectrum of 2 is bounded and discrete, with no non-zero
point of accumulation. Thus the resolvent (A# —2)~! exists as a bounded operator for A in the
resolvent set, the complement of the spectrum, and is an analytic function of A (see Dunford &
Schwartz 1958, p. 566). This establishes the assertion of § 3.

From equations (5.1) and (5.5),

Hi(x) = (\S = 2)7 (V)= {~ V x (ux HY)), (5.6)
and the real tensor e, is now determined by equation (3.9):

{0 x Hy)AY, = o, (HES,. (5.1)
It was shown in § 4 that a motion will give dynamo action for given positive resistivity A if the real
determinant o = o] (5.8)

is non-zero. Now from equations (5.6) and (5.7), with the analyticity in A of the resolvent

60 Vol. 266, A.
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(AF —2)~1, a is an analytic function of A, with poles at the discrete points of the spectrum of 2.
Thus if o has zeros on the real axis with a non-zero point of accumulation, it vanishes identically.
So to prove dynamo action for a given motion and for nearly all resistivities it is sufficient to prove
that « is non-zero for a single resistivity A, or even that « is non-zero for sufficiently large A.

Let ¢ be the bound of the spectrum of 2. Then for A > ¢, the resolvent (A —2)~! can be
written

(AF=2) 1= ¥ gnfarh, (5.9)
n=0

where the series is convergent in the uniform operator topology (Dunford & Schwartz 1958,
p- 567). Thus from equations (5.6) and (5.9),

H)(%) = %0 2n(VA)=1{ =V x (1 x HA)} A, (5.10)

In order to apply this result, the Fourier series form (2.8) for # and H' must be used. From equa-
tion (5.4) the corresponding form for 2 is given by

(9H} (m) = (m¥)=limx ¥, (k) x Him - k), (5.11)
ke K
for m in the set K defined by equation (2.9). Thus

(wx A = 3 G20/ St (5% (th 386 (1 x H))..), (5.12)

where u; = @1(k;), X denotes a sum over all ordered sets (chains) {&,, k,, ..., k;} of [ non-zero
®

vectors in K, with zero sum and with non-zero partial sums m; = k,;+ ky+... + k;, and
§; = my[(m;)2

‘Equations (5.10) and (5.12) can incidentally be obtained in the following equivalent way.
Equation (3.3) for Hy(#) can be written

AVEH, (%) = —V x (ux H}) —V x (1 x H). (5.13)

Writing Hij(x) = X h™[A", (5.14)
1
and substituting in equation (5.13) gives
h® = — (V2)-1V x (u x H}), }

hOD = — (V2)-1V x (1 x h) = 2R, (5.15)

Equations (5.14) and (5.15) are together equivalent to equation (5.10).
Equation (5.12) is clearly in the form (5.7), and the tensor «,, has been found explicitly as a
power series convergent for A > ¢. As A =0,

Lgr ~ AP A, (5.16)

o~ a®[A3 = |a2] 23, (5.17)

where o) is determined by the / = 2 term in equation (5.12). For an incompressible fluid, with
V.u=0,

it is given by ol = —4(% (vxw).k(k%)2k,k, (5.18)

where @1(k) = v+iw, and X denotes a sum over non-zero vectors in K in which if k is included,
(K)

— k is not.
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The norm on the linear space of infinitely differentiable motions with fixed spatial periodicity,
given by 1
Juf? = 7 [ wispav (5.19)

= X |a (k)%
K

is now introduced. It is straightforward to show from equation (5.18), or, for compressible
motions satisfying the equation of continuity, from the / = 2 term of equation (5.12), that the
determinant a® given by equation (5.17) is a continuous function of the motion with respect to
this norm, and is non-zero on an open set with closure the whole space.

The main result can now be stated as follows. For any given spatial periodicity, there is a set
of infinitely differentiable spatially periodic motions of an infinite homogeneous conducting
fluid, each of which will give dynamo action for all finite resistivities but possibly a discrete set
with no non-zero point of accumulation. This set of motions is open with respect to the norm
(5.19) on the space of such motions; its closure is the whole space.

6. RELATED WORK ON SPATIALLY PEliIODIC DYNAMOS

Two independent papers on this subject were presented at the same conference in 1967.
G. O.Roberts (1969) presented analytic and numerical results concerning the dynamo action
of two particular spatially periodic motions, functions of only two Cartesian coordinates. These
results are extended, a general theory for such dynamos is presented, and results for two addi-
tional particular motions are given, in a further paper (G. O. Roberts 1970a). The second paper,
by Childress (1969), presented results given in detail in a report (Childress 1967a). These are
now described in relation to, and in terms of, the present work.

Childress considers spatially periodic motions as described in § 2, with the minor restriction
that the vectors 1, I, and I, are orthogonal. He requires that only a finite number of the Fourier
series terms 1(k) are non-zero, cf. equation (2.8), and puts a further restriction on this set of
k values, as mentioned below.

He confines attention to steady dynamos, with the added condition that the field tends to zero
at infinity. It is possible to superpose field solutions of the form

B = H(x)exp (ij. %) (6.1)

(Where H( %) is u-periodic (cf. equation (2.11)), to give a field vanishing at infinity, if and only if
there are field solutions of the form (6.1) for j values on a curve with no subset of finite arc length
lying identically in any plane, or on a surface with no subset of finite area lying identically in
any plane (Lighthill 1960). Childress imposes the stronger condition that there be such solutions
for all j in a closed convex analytic surface, in which case it is possible to superpose solutions so
that B = O(r~1) at infinity. In any case, it is impossible to superpose solutions to obtain a steady
field of finite total energy, as given by equations (1.4), (2.17) or (B7).

In order to prove the existence of field solutions of the form (6.1), Childress considers a limit
in which with fixed resistivity, the motion increases and its length scale decreases, while j in
equation (6.1) above remains fixed in order of magnitude. With fixed motion as in this paper,
his limit is equivalent to a simultaneous limit of large resistivity A and small j. This contrasts with
the method in this paper of considering fixed resistivity of any magnitude, in a small j limit.

Childress obtains the same basic dynamo regeneration term of order j as that studied in this

60-2
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paper, and balances it with the natural decay rate Aj2 of a field of the form (6.1) to obtain a
condition on j. The exact equations are

ARHA = if x (u x H')A, (6.2)
—A(V+ij)2 H' = (V+if) x (0 x HA) + (V+if) x (u x H')’, (6.3)

cf. equations (2.12), (3.7) and (5.13). For sufficiently large A, equation (6.3) can be solved just
as equation (5.13) was, to obtain the power series (5.12) for (u x H')A:

, © 7\-1

(uxH)* = 5 (7\) St (s % (811 % o (51 (11 HY)..), (6.4)
where s; is now (m;+j)/(m;+j)?; the replacement of m; in equation (5.12) by m;+j corre-
sponds to the replacement of V in equation (5.13) by V +ij. Equation (6.4) defines the tensor
®,q @ complex function of A and j, and equation (6.2) can now be written as the eigenvalue
prOblem /\j2 bq = ieqrs jr Xgy bw:
cf. equation (3.11). The analysis of § 4 now applies without alteration, except that v, a,, and e,
are functions of j and are complex. So

Aj2 =+ JD—ij.v,
cf. equations (4.6), (4.9), (4.11) and (4.12), and
(2 +if.9)2 = D = od, j, jo (6.5)

This equation was obtained in an equivalent form by Childress. It is sufficient (though not
necessary as he states) for the reality of equation (6.5) that v is imaginary and og; real, and thus
that a, is Hermitian. He proves that contributions to «,, in equation (5.12) from even and odd
values of / are respectively Hermitian and anti-Hermitian, and restricts the allowed non-zero
Fourier components #(k) so that there are no odd chains with the u; all non-zero. He further
shows from equation (6.4) that for j = 0, «, is real (this fact is established in this paper basically
from the reality of equation (5.13) which determines Hj and «,,). He confines attention (not
explicitly) to motions for which this real tensor is non-zero, and asymptotically dominant for
j non-zero.

Then in his limit a

0
rs"’o‘()

TS 5

where o9 is real and symmetric, with principal values ., a,, 5. So in the limit, equation (6.5)
Approximates to (A%)? = jlagog+jiagoy +75a,

cf. equation (4.12). These equations define a bounded surface provided two of the o values have
the same sign. The surface is convex everywhere provided that all the & values have the same
sign and that the greatest is less than twice the least. Childress’s result is only slightly different.
He shows that in the limit the higher order terms in «,, have small effect on the surface, so long
as the reality of equation (6.5) is preserved.

This work is thus an advance from that of Childress in three main respects. First, a much wider
class of motions is considered. The spatial periodicity is generalized, and motions periodic in
space-time are included. There is no restriction on the number of Fourier components allowed
in the series expansion of the motion. It is proved, effectively, that almost all motions give dynamo
action. Secondly, there is no restriction on the resistivity; this is a major advance since low
resistivity analysis and numerical work present particular difficulties. Thirdly, time-dependent
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dynamo action is included, and the asymptotic form of the growing field for a general initial
field of finite energy is presented. All Childress’s steady dynamos are unstable in the sense that
his motions admit growing fields; furthermore, a steady-field solution cannot have finite energy.

Steenbeck, Krause & Radler (1966) and Ridler (1969a) have studied the dynamo action of
turbulence. They show that with the Lorentz force negligible, locally averaged quantities in a
rotating turbulent fluid can satisfy the equation

u'x B = aB, (6.6)
cf. equations (3.9) and (A 17). This result has been confirmed experimentally by Steenbeck,

Kirko, Gailitis, Klawina, Krause, Lauminis & Lielausis (1967). In a limit where equation (6.6)
is a satisfactory approximation, the equation for the locally averaged magetic field becomes

oB/ot = V x (u x B+aB) +AV2B, (6.7)
and Steenbeck & Krause (1966, 1967, 1969) and Moffatt (1970) have studied this equation in
a spherical geometry, looking for steady and oscillatory solutions, and applying the results to
terrestrial, solar and stellar dynamos. The application of equations (6.6) and (6.7) is equivalent
in a sense to a small j limit, with terms beyond the first order neglected. Réadler (19694, ) has
obtained, and studied the consequences of, alternatives to equation (6.6).

In a more rigorous application to finite regions, Childress (1967 5) has proved that a spatially
periodic motion, fitted into an insulated sphere by means of a cut-off function, can maintain a
steady magnetic field. Essentially his method is to prove that the exact linear operator involved
is very close to the simpler approximate linear operator derived using an equation corresponding
to equation (6.7) above, in a low-conductivity limit where the size of the sphere becomes very
large compared with the length scale of the spatial periodicity. It may be possible to generalize
this finite region result to a wider class of motions and conductivities and to growing magnetic
fields. A limit with the sphere large compared with the spatial periodicity length scale would
again be required, so that the averaged equation (6.7) could be applied, with 9/d¢ replaced by
a complex eigenvalue p and with the scalar & replaced by a tensor or a tensor function of position.
It would only be necessary to prove that there was a solution of the exact equation close to a
growing solution of the approximate equation.

In a future paper (G.O.Roberts 19705), numerical results will be presented demonstrating
the dynamo action of axisymmetric motions in a sphere. The motions #(r, 6) in spherical polars
are chosen to be closely analogous to a particular two-dimensional spatially periodic dynamo
motion (G. O. Roberts 19704), and growing field solutions of the form

B = H(r,0) exp (pt+img), (6.8)
are found, cf. equation (2.11).

APPENDICES

A. Motions periodic in space-time

The analysis extending the results of §§ 2 to 5 to motions periodic in space-time is presented
here, and the same result is obtained. If there is a fixed set of four independent space-time vectors
{(Yg, t5): 0 = 1,2, 3,4} such that for all & and ¢, and for all  values,

f(x+lﬁ:t+t¢9) Ef(x,t)a (A 1)

then the function f(«,¢) is periodic in space-time. A function with the same periodicity as the
motion u(«, ) will be called u-periodic.
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The average part f4, and the oscillatory part f'(«, ¢) of such a function f(, ¢) are defined in a
way analogous to that for spatially periodic functions given in § 2:

S O o
L w0 ar, (A 2)

4J T

(where 7, is the space-time volume defined by the first integral), and

f,(x’t) :f(x7t) _fA' (A 3)

From these definitions, trivially, (f)A =0 (A 4)
(oflor)~ = o, (A 5)

(VH)A = o. (A 6)

Incidentally, motions which are periodic in time and space separately, for which a suitable
choice of the four independent vectors has ¢, = ¢, = f; = 0 and [, = 0, are a particular case of
motions periodic in space-time. 'The analysis here applies to a much more general class of motions.

It is assumed below that u4 is zero. If this is not so in the original coordinate system, then it
will be so with respect to moving axes, and the motion will remain periodic in space-time after
such a Galilean transformation.

Functions periodic in space-time can be Fourier analysed in a way analogous to that given in

§2. The result is fm= = F(k,0) exp{i(k. s +wt)}, (A7)

where K, is the set of space-time vectors defined by
K, = {(k,0): (k) = 2w(L{)"'n; n, integers}, (A 8)

L{ being the transpose of the matrix L, with its columns the four independent space-time
vectors.

Attention will be confined to magnetic fields of a form analogous to that given by equation
(2.11): B(x,t) = H(%,1) exp (pt+ij. %), o ‘ (A 9)
where H(#, t) is u-periodic, p and H are complex, and j is real. For spatially periodic motions, it
was proved rigorously in § 2 that there is dynamo action in the sense that a finite initial magnetic
energy can grow exponentially, if and only if the field equation (1.1) has a solution of the form
(2.11) with the real part of p positive, for some j. It will be assumed here that the same applies
to motions periodic in space-time. Also, attention will be again confined to small j.

Substitution of equation (A 9) into equations (1.1) and (1.2) gives

pH(x,t) = Z#,H(«,1), (A 10)
(V+1ij).H(x,t) = 0, (A 11)

where Z, is the linear differential operator on the space V,(j) of u-periodic vector functions
satisfying equation (A 11), given by

P H(%,t) = —H+ (V+1f) x (ux H) + A(V +ij)2 H. (A 12)
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It is assumed as in § 3 that for small j,

b= Spu
0 (A 13)

H= Y H,(x01),
0

where H, and p, are explicitly of nth order in the components of j. The justification of these
series closely follows the degenerate perturbation theory described in appendix D. The analysis
now follows that of § 3 closely. To zero order, equation (A 10) has the average

bo H(“)& =0, (A 14)
and attention is confined to solutions with H§ non-zero. The oscillatory part of equation (A 10) is
TH)=—-Vx(uxH}), (A 15)

where the operator 7, on the space Vy of oscillatory u-periodic vector functions H'(#,t) is
defined by the equation
T H (%,t) = —H' +V x (ux H) +AV:H'. (A 16)

Equation (A 15), with the assumption that the inverse 7 ;! exists as an analytic function of A,
determines Hy, and thus also the real tensor a,,, again an analytic function of A, such that

{(u’ x Hy)A}, = o {Hi, (A 17)

To first order in the components of j, equations (A 10) and (A 11) yield
P HE = ij x (u x Hp)A, (A 18)
j.-Hy =0, (A 19)

and so the analysis of § 4 applies exactly, showing that it is sufficient for dynamo action that the

determinant
eterminan o = |og], (A 20)

an analytic function of A, is non-zero.
It remains to analyse the operator ;. The operator 2, on the space Vj is defined by

-1
2,H'(%,1) = (—%-MVZ) (—Vx (ux H)), (A 21)
so that ToH (%,1) = ( -2 +/w2) (F—2) H, (A 22)
-1
and TV (3,6) = (S — 21 (—a%mvz) ", (A 23)

assuming that the operator (# —2,) is invertible (cf. equations (5.3), (5.4) and (5.5)). Now
the operator 2,(A) is compact, as shown in appendix B. So (# — 2,(A)) either has no inverse for
any value of A, or this inverse exists for all values of A but possibly a discrete set with no non-zero
point of accumulation (see Dunford & Schwartz (1958, p. 592)). The analysis below shows that
J — 2, is invertible for sufficiently large A, so the first alternative cannot apply. Further, the
same lemma shows that if Z;(A)~1 exists, it is analytic in A.

Finally, the inverse J ;' can be obtained as an infinite series for large values of A. In the
Fourier series form

(D H'Y (myp) = (p+AmD)-limx Y d(ko)x Am—kp—o), (A 24)

(k, w)eK,
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for (m, u) € K. Hence, cf. equation (5.12),

(1 x Hi)A = é(lz)u,x Oy X (g % ... (8, x (1t x HY)...)), (A 25)

where u, = @1(k;,0,), 0, = im,/(ix + Am?), and ¥ denotes a sum over all ordered sets
U

{(kb (1)1), (k2> w2)> cety (kl: wl)}

of [ non-zero vectors in the set K,, with the sum (m;, ;) = (ky, ;) + (Ry, 0,) + ... + (k;, w;) non-
zerofori = 1,2,...,1—1, and zero for ¢ = [. The series is convergent for sufficiently large A, and
equation (A 25) is in the form of equation (A 17). Further, as A — oo,

iy ~ AN, | (A 26)
~ a3 = 1P /28
o~ a®23 = |a| A%, (A 27)
where o) is determined by the / = 2 term in equation (A 25), and, for incompressible motions,

ap = =43 (vx ). k(k)kk, (A 28)

4

where @1(k,w) = v+iw, and 3, denotes a sum over non-zero vectors in K, in which if (k, v) is
(Ky)

included, (— k, — ) is not.
The norm on the linear space of infinitely differentiable motions with fixed periodicity in
space-time, given by

fuj? = - | u(s2ar,
= ok o)), (A 29)

is now introduced. The determinant o/®, given by equations (A 27) and either (A 25) or (A 28),
is then a continuous function of the motion, non-zero on an open set with closure the whole space.
The result stated at the end of § 5, suitably reworded for motions periodic in space-time and for
the norm (A 29), then follows.

B. Spectral theory of the linear operators
(a) Results for 2 (j) and T

The linear differential operator £(j) on the space V(j) of u-periodic vector functions satis-
fying equation (2.13) is defined by equation (2.14). The linear differential operator 7 on the
space V' of oscillatory solenoidal u-periodic vector functions is defined by equation (5.2) and is
closely related to £(0), as shown below. The results stated here for the operator.# on the space V
apply to both #(j) and .7, and also to the operator Z5(j) introduced below.

The eigenvalues /,, of & are complex in general, since % is not self-adjoint. Writing them as

£, +17,, we have £, —>—o0, (B1)

and there are constants £, ¢ such that
7] < e(E—Eu)E (B 2)

Thus the eigenvalues are confined within a parabola with its axis coinciding with the negative
real axis in the complex plane, and have no point of accumulation.

Ifall the eigenvalues are distinct, the corresponding eigenfunctions are complete in the space V.
If there is degeneracy, this is not so in general, unless generalized eigenfunctions are included.
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These are defined recursively as follows. H,, , is a first-order eigenfunction of £ with eigenvalue

1, if

(#—-1,)H, ;= 0. (B 3)
For i > 1, H, , is an ith order eigenfunction of & w1th eigenvalue 7, if
(£~1,5)H, ;= H, (B4)

where H, ;_, is an (¢—1)th order eigenfunction. Then there is an infinite set of independent
generahzed eigenvectors of & complete in V. They are all infinitely differentiable.
With respect to such a set as base, & has an infinite Jordan canonical matrix form. For

,5,”( > an’an,,-) > ( > L‘.’j‘)an,j) H, (B 5)

=1

where L™ is the m,, x m, matrix with diagonal terms /,, and with the terms immediately above
the diagonal unity, the other terms being all zeros. Thus this result is related to the spectral
theory of non-Hermitian matrices of finite dimension.

Properly speaking, the result is that the set of generalized elgensolutlons is complete in both of
the Hilbert spaces V; and 7, defined as the closures of the space of twice differentiable complex
u-periodic vector functions (with the relevant further restrictions for V(j) or V’), with respect
to the norms corresponding to the inner products

=7 [ 1.8 (80

(hgh =7 [ |rar L a (87)

respectively, where the bar denotes the complex conjugate and the integration is over a single
u-periodicity cell (cf. equation (2.2)). Completeness means that finite linear combinations of the
eigenfunctions are dense in the Hilbert space.

(b) The operator Py(j)

The operator Z5(j) on the extended space Vg of u-periodic vector functions, without the
restriction (2.13), is defined by the same equation as that defining Z(j), equation (2.14).

The spectral theory of such elliptic linear differential operators was considered by Browder
(1953). His analysis was for a single dependent variable vanishing on the boundary of a finite
region. As he pointed out, this analysis can readily be extended to an operator such as Zy(j),
with three dependent variables, the components of H. The analysis is apparently slightly easier
with the boundary condition of u-periodicity which applies here; the difference is in the study
of a Green function.

Browder’s result for the operator £ is precisely that stated above for .#. The result is given
in Dunford & Schwartz (1963, p. 1746).

(¢) The operator P(j)

In order to establish the same result for the operator Z(j), it must be shown that an indepen-
dent subset of the generalized eigenvectors of Z5(j) are complete in V(j), a closed subspace of V.

This depends on the following three lemmas, for which {p,, H, 4, ..., H, , } denotes the
complete set of generalized eigensolutions of Z;(j). Note that the p,, are assumed distinct; the
restatement and proof of the third lemma for the general case are tedious.

61 Vol. 266. A,
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(i) Unless 7, isin the known spectrum of the operator A(V +ij)2 on u-periodic scalars, or the
spectrum of Z,(j), the function
(Zp(§) —mJ) T H
exists, and is in V(j) for all H in V(j).
(ii) Fori> 1,

(Ze(j) —mof) T H,,— (pp—m) T H, ;= G,y = — .22(770 —pn) T Hy g1
iz

(iii) If in the complete set of generalized eigenvectors of Zg(j), there are m, associated
independent generalized eigenvectors corresponding to the eigenvalue p,, and u,, of these are
in V(j), they are the first z,,.

Suppose there is a vector function H in V( j)with, in its expansion, non-vanishing coefficients
of generalized eigenfunctions corresponding to eigenvalue p, which are not in V( j). Choose a 7,
satisfying the above conditions and nearer to g, than to any other of the discrete eigenvalues of
Py (J). Operate successively according to (ii) above to eliminate any eigensolutions H,, ; of higher
order than p,+ 1. Subtract out the first x, eigensolutions, to obtain the function Hj, still in V(j).
Now subtract out the component of G, , from

(po—my) (PE(j) —my#) 1 Hy,

to obtain the function H,, still in V(j). Repeat to obtain a sequence of functions H,, in V(j)
and converging to a non-zero multiple of H,, , ., which is not in V(j). But V(j) is closed, hence
there is a contradiction.

(d) The operator T

The space V(0) is the Cartesian product of the space V'’ of functions H' (on which 7 operates)
and the space of complex vectors H*. The operator #(0) on V(0) is given by

2(0) H = 2(0) (H* + H')
= Vx (ux HY + T H.

The proof that the operator 7 on V' has the same spectral properties as those described for
& above depends on the following lemmas.

(i) Any generalized eigenfunction H,, ; of #(0) with non-zero average corresponds to an
eigenvalue p,, = 0, and is the highest order generalized eigenfunction of its set, i.e. ¢ = m,,.

(ii) If necessary, the set of independent generalized eigenfunctions of #(0) complete in V(0)
can be re-chosen so that there are only three with non-vanishing average, these averages being
independent.

The remaining eigenfunctions are then also generalized eigenfunctions of the operator 7~
on V', and are complete in V’,

(¢) Continuity of the spectrum of P(j)

The spectrum of Zy(j) is a continuous function of A, the Fourier components @ (k) of the
motion, and of j. The same applies to the spectrum of Z(j), except that there is a discontinuity
at j = 0, one further eigenvalue zero is introduced because the condition (2.13) has its average
an identity only when j is precisely zero.

Further, at isolated eigenvalues (where there is only a first-order eigenfunction, and the
eigenvalue is not repeated) the eigenvalue is an infinitely differentiable function of these
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quantities, and the corresponding eigenvector can have its arbitrary complex multiple chosen
so that it too is an infinitely differentiable function. These results are established by standard
perturbation theory, see for example, Dunford & Schwartz (1958, p. 587), Kato (1966).

(f) The operators 2 and 2,

The linear operators 2 and 2, are defined by equations (5.4) and (A 21), with the corre-
sponding Fourier series forms (5.11) and (A 24) respectively. All that is needed in this paper is
a knowledge of the spectrum of each.

The operator 2 is the limit in the uniform operator topology of the operator 2(n) defined by

(9(n) H} (m) = (m?)~tim x 3 (k) x HAm-k) for |m|<n,
and {,@/(;z) H}(m) =0 for |m|>n.

Now 2(n) has finite dimensional range, and thus is compact. So 2 is also compact (see Dunford
& Schwartz 1958, p. 486). The operator 2, can be shown to be compact in the same way, defining
2,(n) to have the range k?+ w? < n%

Compact operators have a discrete bounded spectrum with no non-zero point of accumulation
(see Dunford & Schwartz 1958, p. 579); on the complementary resolvent set the resolvent
(AF—2)71 is an analytic function of A.

C. The form of the growing magnetic field

This appendix completes the analysis of § 2 in three points. First, it was assumed in obtaining
equation (2.24) that the linear differential operator # has a complete set of eigenvectors for each
value of j. But as stated in appendix B, this is only so in general if generalized eigenvectors are
included.

The field solution B(,¢) corresponding to a given initial B(#) can be Fourier analysed to a
form corresponding to equation (2.21):

B(x,t) =fJH(x,j,t) exp (ij. #) d3j, (C1)

and the function H(%,j,?) is in V(j) and can be expressed in terms of the generalized eigen-

functions of & in the form
oo

Mn .
H(‘”:j; t) = gl '21 an,i(]: t) Hn,i(x;j); (C 2)
where m,, generalized eigenfunctions H,, ,(#,j)
(B3), (B4).

The m components a,(t) corresponding to a particular generalized eigenfunction set are
determined by the equations

correspond to the eigenvalue p,,(j), cf. equations

d; = pa;+a; 1=1,2,...,m—1),
. 0 p +1 ( ) } (C 3)
Ay, = Pl
(cf. equation (B 5)), with the solution

a, ert=4h,,

a, e Pt =p t +b,, 1,

.m 1 m m—1 (C 4)

: bt b, tm2

a; ePt= (m'_l)!+ (mi2)! 4o byt + by,

61-2
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by, by, ..., b, being the initial values a,(0), a5(0), ..., 4,,(0). So the generalization of equation (2.24)
is, from equations (C 1), (C2) and (C4),

B(,1) =j 4% 3 H,(%,4,0) exp (b, 1+if. ), (C 5)
J n=1
My i ]
where Hy(5,7,8) = 3 a, (3,0 S ~— H, (#,). (C 6)
i=1 =1 (k)™

Secondly, in § 2 it was stated that a motion will give dynamo action, in the sense that a finite
field energy can grow exponentially, if and only if there is for some j an eigenvalue of & with
positive real part. Equation (2.24) or the more general result (G 5), do not establish this rigor-
ously, and the energy equation (2.17) must be appealed to. This implies

EQ) - wzf & 3 |B(j+ k)2
J keK

Tr2 ,
=" @ [ R ()
J T

where 7 is the volume defined by equation (2.2), and H(«, j, t) is defined by equation (C 1), and
expanded in generalized eigensolutions of & in equation (C2). Using equation (C2),
us , e |
7-f'r |H( %7 t) IZ dr = Za"v % Mnla 11319, 15 ng, 1

= a*Ma, (G8)

where M is a constant Hermitian positive definite infinite matrix, the bar denotes complex
conjugate, and a* is the transposed conjugate of the column vector a(¢) of complex amplitudes
a,,;(t) given by equation (C4). Thus

E() = [ &(aMa} (). (©9)

Further, from the continuity property of the spectrum, stated in appendix B, a*Ma is a con-
tinuous function of j. Thus E(t) can grow exponentially, indefinitely, if and only if one at least
of the amplitudes a, ;( f,¢)can grow exponentially, that is, if and only if there is an eigenvalue
p,, with positive real part.

It remains, thirdly, to prove the result (2.25) for the asymptotic form of the growing magnetic
field for large time. Assume that the eigenvalue p, (j,) with the largest real part is non-degenerate
and, further, that Re{p,(j)} has a simple maximum at j,. Then f, defined by equation (2.27), is
real, and the real part of the matrix P defined by equation (2.28) is positive definite. Further,
a,(j) Hy(,j) is differentiable at j,. In the equation (2.24) or (C5) for the growing magnetic
field, asymptotically significant contributions will all come from values of j very near to + Jo-
The value of p, near j, can be written

0(J) = pu(Go) = 1=V PL+ O(F), (G 10)
where [ is j —j,. Further, the contributions to B(,¢) from +j, are conjugate, so that B(«, )
is real. So, using equation (2.24) or equation (C5), equation (2.25) is obtained in the limit

t— 00, with
I(%,1) = f d®lexp {il. (% —ft) — I'PIg, (@11
1

where the integral can be taken as over all space; only I values very close to zero make a signifi-
cant asymptotic contribution. It should be noted that the contribution from the derivative of
a,(j) Hy(%,j) with respect to j at j, is asymptotically negligible provided ,(j,) is non-zero.
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The evaluation of the integral (C 11) in the form of equation (2.26), and the result (2.29), are
difficult because P is complex. They are consequences of the following results.
(1) The inverse of a symmetric matrix with positive definite real part has positive definite
real part, For let the matrix be F, +iF;. Then its inverse is

(B+P P R) "t —iP BB+ PR L

(if) For any non-singular n x n matrix, an r-rowed minor of the adjoint is the product of two
terms, the cofactor of the corresponding 7-rowed minor of the transpose, and the (r — 1)th power
of the determinant.

The rth compound matrix A® of a £ x n matrix is the ,C, x ,,C, matrix of 7-rowed minors in
dictionary order. By the Binet-Cauchy theorem, if C = AB then C® = 4A®WB®, Denoting the
matrix, adjoint, and determinant by P, PA, p, we have

PPA = pI
whence PO(PAYD = (pI)®;
therefore (PY)D = pr(PO)-L, (C12)

Now with K, L, M denoting ordered sets of 7 integers from 1 to n, and with K’, L', M’ denoting
the corresponding ordered complementary sets of n —r integers, by the Laplace expansion of a

determinant, % Per, Py ML = 00z ms

where px; is the 7-rowed minor, 0, has the obvious Kronecker meaning, and 9 is the sign of

the permutation {}(’, v Kn,} . But Py = pre
So {(PO) e = 07w I
= p~1 x cofactor of py;;,
= p~1 x cofactor of {PT},,, (C 13)

where the T denotes the transpose. Equations (G 12) and (C 13) together give the required result.
(i) @ ®
I—':‘- f dxl...f dxnexp(———Pklxkxl+quk)

= minp=dexp (}(PY) uqrq) (C 14)

where P is complex symmetric with inverse P~! and determinant p, ¢, is complex, and Re (P) is
positive definite.
For real P this result is straightforward, since P is diagonal with respect to a new orthogonal
coordinate system. For complex P the argument is more difficult, and proceeds by induction.
Forn=1, " '
f exp (—px2+gx) dx
= f:o exp : —p (x — 2%]) 2: dx exp (¢%/4p)
= mip~texp (¢*/4p),
by contour integration.
" Now assume the theorem is true for dimension up to z— 1. Use Latin suffixes for the numbers
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1 to n, and Greek for 2 to n, with the summation convention for each, and denote the cofactors of
the (n—1) x (n—1) matrix by 2. Then the integral (C 14) is

0

I= dix, exp (py, 14} + gy %) oD (Pih)—% exp {T (g — 202 %1) (42— 2pr1%1) [4p8 1)

— 0

using the theorem in (7 —1) dimensions, with x, regarded as a constant, the determinant being
pi1 and g;, being replaced by ¢, — 2p,,%;. Now use the theorem in one dimension to obtain

Todela | (&1=Padami/pts)? }
4ty (1= PabuTiP))

which reduces to equation (C 14) after some effort, using (ii) above in the form
pLapi—piipa = pmis.

Finally, the result (2.30) for the asymptotic total energy E(t) follows from equation (C7) and
the assumptions in § 2. For, doubling the contribution from values of j near to +j,,

I = () (pr1— T pra prafpr)~} exp {

2m? . . ,
8() ~ 2 [ ar { ctla,(d) Hy(s,do) explo o+ DB
and the [ integral can be asymptotically evaluated using equation (C 10).

D. The perturbation method for small j

In § 3 the eigenvalue problem defined by equations (2.12) to (2.14) was studied by a perturba-
tion method for small j, and attention was confined to the first term p, of an expansion in ascending
powers of the components of j for the eigenvalues p vanishing to zero order. This expansion is
now justified for the main case considered, when the resistivity A is such that the operator 7~
defined by equation (5.2) is invertible (cf. §5), and when the corresponding tensor a,, and the
direction j of j are such that the quantity D defined by equation (4.12) is positive. It is also shown
below how further terms in the expansion can be obtained.

Equation (2.12) implies that

{p—A(V+i)H{(V+) . H} = 0. (D 1)
Thus the restriction (2.13) is redundant provided that
b+ —A(j+ k) (D2)
for any vector k in K. The average and oscillatory parts of equation (2.12) can be written in the
following forms: PHA = ijx (ux H)A = %, H, (D 3)
p*H = (V+1j) x (ux HA) + (V+1ij) x (ux H') +AVZH' + 2iA(j.V) H'
=(+F)HM+ (T +T,)H, (D 4)

where p* = p + Aj?, the operators & and ™ are of zero order in the components of j, the operators
Ry, S, and T, are of first order, and 7 is invertible by assumption.

Equations (D 3) and (D 4) define the operator Z4(jj) on u-periodic vector functions without
restriction, cf. appendix B, § (5). For fixed j, #5 is an analytic operator-valued function of j.
Further, for j = 0, zero is an eigenvalue, with multiplicity 3. Thus (see Dunford & Schwartz
1958, p.587) for sufficiently small |j|, #5(jj) has the three eigenvalues A;(j), A,(j), A;3(),
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analytic functions of the principal values of 7Y™, where m = 1, 2, or 3. The result required is that

m = 1, so that the expansion (5) applies.

Itis now assumed as in § 3 that an eigensolution can be expanded for sufficiently small real j as

p=Spw pr=3Sp5, H=XH,
0 0 0

(D 5)

where p,,, p and H,, are explicitly of nth order in the components of j, and p,, = pi for n + 2.

To zero order, equation (D 3) gives
l’?; Hé =0,

and attention is confined to eigensolutions with H§ non-zero.
To zero and first order respectively, equations (D 4) and (D 3) give

0 =%H§+J Hy,
Pt H = %, Hy
= - %, &Y H
and this is the eigenvalue problem studied in §4; in fact
(= BT S}y = by
cf. equation (4.1). There are thus three distinct eigenvalues pi, given by
Pr=4D—ij.v, By=—yD—ij.v, p3=0,
with corresponding left and right eigenvectors I, r;, functions of j, defined so that
|L12=1, L.r;=1,
and therefore satisfying L.r; =6,
It should be noted that I; is a multiple of j, as mentioned in § 4, and that
L. %, =0.
For definiteness, take the growing solution
i =p, Hy=r.
To first and second order respectively, equations (D 4) and (D 3) give
J Hy=-SH} +pf Hy— 1 Hy — 7 Hy
= —-S%H{ + Gy,
i He +pf HY = 7, Hj,
where G is now known, from equations (D7) and (D 13). Thus

pEHe + (pf + 2,7 ) HY = #,T 1 Gy

(D 6)

(D7)

(D 8)

(D9)

(D 10)

(D 11)
(D 12)

(D 13)

(D 14)

(D 15)

(D 16)

(D 17)

There is an arbitrariness about Hy, since clearly if equation (D 17) is satisfied, it will remain so
with the addition to Hf of any multiple of Hf = r,. The same arbitrariness occurs at all orders,

as usual in perturbation theory. So we impose

HA: =c,ry+d, 1y

(D 18)
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forn > 1, where ¢, d, are explicitly of order z in the components of j. Then multiplying equation
(D 17) on the left by I, 1,, I; and using equations (D 10), (D 12), (D 13), (D 14) and (D 18) gives

pE=4L.291Gy, (D19)
(Br=B2)er=1,. %, T 1 Gy, (D 20)
(ﬁl—ﬂ:}) d1 = 0. (D 21)

Thus H{ is known from equation (D 18), and H; from equation (D 15).

The work of the preceding paragraph can be repeated at successively higher orders, with
successive known G, in equations like equation (D 15), and with 34, ¢,,, and d,, = 0 successively
determined from equations like equation (D 17).

Finally, then, since ¥ is non-zero, equation (D 2) is satisfied for sufficiently small j, justifying
the neglect of condition (2.13). The form of the result shows that m = 1 in the analysis of Z(jj),
justifying the use of the expansion (D 5) and demonstrating its convergence for sufficiently small .

The author wishes to thank his research supervisor, Dr H. K. Moffatt, for his help and
encouragement during this work. The Science Research Council supported the early stages with
a Research Studentship at the Department of Applied Mathematics and Theoretical Physics,
University of Cambridge. It was completed at the Department of Applied Mathematics,
University of Newcastle upon Tyne, while the author was working with Professor P. H. Roberts
as a Senior Research Associate, with the research grant GR/3/425 from the Natural Environment
Research Council.

REFERENCES

Backus, G. E. 1958 Ann. Phys. 4, 372.

Braginskii, S. I. 1964a J. exp. theor. Phys. 47, 1084 (translated in Soviet Phys. JETP 20, 726).

Braginskii, S. I. 19646 J. exp. theor. Phys. 47, 2178 (translated in Soviet Phys. JETP 20, 1462).

Browder, F. E. 1953 Proc. nat. Acad. Sci. U.S.4. 39, 433.

Childress, S. 1967a Report AFOSR-67-0124, Courant Institute, New York.

Childress, S. 19675 Report AFOSR-67-0976, Courant Institute, New York.

Childress, S. 1969 A class of solutions of the magnetohydrodynamic dynamo problem, p. 629 in The application of
modern physics to the Earth and planetary interiors (Proc. NATO Adp. Study Inst, Newcastle, April 1967, edited by
S. K. Runcorn). London: Wiley-Interscience.

Cowling, T. G. 1933 Mon. Not. R. astr. Soc. 94, 39.

Cowling, T. G. 1957 Q. JI Mech. appl. Math. 10, 129.

Dunford, N. & Schwartz, J. T. 1958 Linear operators. I. General theory. New York: Interscience.

Dunford, N. & Schwartz, J. T. 1963 Linear operators. II. Spectral theory. New York: Interscience.

Herzenberg, A. 1958 Phil. Trans. Roy. Soc. Lond. A 250, 543.

Kato, T. 1966 Perturbation theory for linear operators. Berlin: Springer Verlag.

Krause, F. & Steenbeck, M. 1967 Z. Naturf. 22a, 671.

Lighthill, M. J. 1960 Phil. Trans. Roy. Soc. Lond. A 252, 398.

Moffatt, H. K. 1970 Turbulent dynamo action at low magnetic Reynolds number. (To appear in J. Fluid Mech.)

Riédler, K.-H. 1969a Mober. dt. Akad. Wiss. 11, 194.

Radler, K.-H. 19695 Mber. dt. Akad. Wiss. 11, 272.

Roberts, G. O. 1969 Dynamo waves, p. 603, in The application of modern physics to the Eart and Planetary interiors
(Proc. NATO Adv. Study Inst., Newcastle, April 1967, edited by S. K. Runcorn). London: Wiley-Interscience.

Roberts, G. O. 1970a Two-dimensional spatially-periodic dynamos. To appear.

Roberts, G. O. 19700 Numerical results on the dynamo action of axisymmetric motions in a sphere. To appear.

Roberts, P. H. 1967a An introduction to magnetohydrodynamics. London: Longmans.

Roberts, P. H. 19670 Woods Hole Oceanogr. Instn Mass. Report 67-54.

Steenbeck, M., Kirko, I. M., Gailitis, A., Klawina, A. P., Krause, F., Lauminis, I. J. & Lielausis, O. A. 1967
Mber. di. Akad. Wiss. 9, T14.

Steenbeck, M., Krause, F. & Rédler, K.-H. 1966 Z. Naturf. 21a, 369.

Steenbeck, M. & Krause, . 1966 Z. Naturf. 21a, 1285.

Steenbeck, M. & Krause, F. 1969 Astr. Nachr, 291, 49.


http://rsta.royalsocietypublishing.org/

